

V2G GLOBAL ROADTRIP: AROUND THE WORLD IN 50 PROJECTS

Lessons learned from fifty international vehicle-to-grid projects.

An Everoze & EVConsult report jointly commissioned by UK Power Networks and Innovate UK October 2018

THIS REPORT PROVIDES A GLOBAL REVIEW OF V2G PROJECTS, TEASING OUT LESSONS LEARNED FOR THE UK AND BEYOND

VCONSULT

<u>р33</u> р37

READY FOR A CROSS-CONTINENTAL ADVENTURE?

A SUMMARY OF LANDMARK V2G PROJECTS FROM AROUND THE GLOBE.

Vehicle-to-grid (V2G) technology is booming. Across the world, pioneering V2G projects are delivering cutting-edge insights through learning by doing.

But whilst most projects have published individual outcomes, no one before has ventured to systematically capture lessons learned – and apply these to the UK and beyond. This is a problem. By focusing only on activity at home, we risk repeating mistakes that others have already learned; and we risk missing out on early successes too.

So this report is a round-the-world road trip of landmark V2G projects. It is jointly commissioned by leading network operator UK Power Networks and innovation agency Innovate UK, both at the forefront of V2G demonstration. It's an ambitious exploration, made possible only through the pan-industry support from contributors, and the records of intrepid explorers who have charted part of the way with early comparative reviews.

Our goal is to equip Distribution System Operators (DSOs) and market participants with the latest intelligence on where the value of V2G lies and what the challenges are. Please join us: pack your bags and off we go!

Vehicle-to-grid (V2G): Technology enabling bi-directional energy transfer from/to plug-in electric vehicles. This is distinct from 'dumb' one-way charging and 'V1G' or 'smart' charging where the rate and time of charge can be varied. Potential of V1G is considered in literature elsewhere.

EXECUTIVE SUMMARY р3 PART 1: MAPPING OUT OUR JOURNEY p7 Every good roadtrip begins with a plan. What projects are out there? We survey the literature and contact leading experts to form a definitive list. PART 2: STOP-OFFS ON THE WAY D11 Right, so we're off! Time to visit the must-see landmark projects! We showcase 10 and marvel at what's been achieved, taking dashboard snapshots along the way. Parker **Re-dispatch** p15 p16 **City-zen Smart Smart Solar** p17 p18 City Charging **Grid Motion** Korean V2G p19 p20 M-tech Labo JUMPSmart MAUI p22 p21 INVENT Network impact p23 p24 PART 3: OUR JOURNAL p25

TABLE OF CONTENTS

This time away has prompted some reflection. We log what we're learned – and the implications for the UK.

APPENDIX 1: PROJECT LIST APPENDIX 2: SOURCES

EXECUTIVE SUMMARY

THERE ARE 50 VEHICLE-TO-GRID PROJECTS GLOBALLY WITH PHYSICAL DEPLOYMENT OF CHARGERS, OF WHICH OVER HALF ARE IN EUROPE

As electric vehicle (EV) penetration increases, Distribution System Operators (DSOs) face new challenges in operating their networks. But with challenge comes opportunity. Vehicle-to-grid (V2G) technology enables bi-directional energy transfer from and to EVs, exploiting the storage potential of the batteries they contain. V2G promises to better integrate EVs whilst offering additional forms of flexibility at a local level.

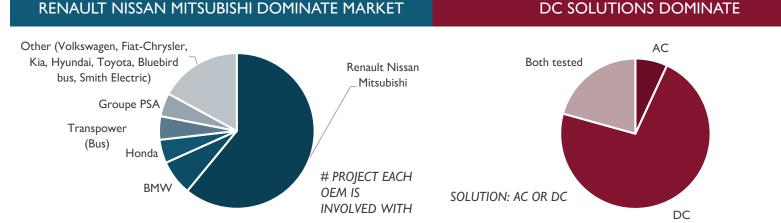
Seeking to learn from wider experience on V2G, and maximise national innovation benefits, UK Power Networks and Innovate UK have together commissioned a global review of this technology.

This report is a round-the-world roadtrip of landmark V2G projects. We've ventured to equip DSOs and market participants with the latest global V2G intelligence and where the challenges lie.

OUR JOURNEY

- 1. Mapping the journey: Every good roadtrip begins with a plan. So we started with a grand mapping exercise surveying the literature and contacting leading experts to form a definitive project list. Our criteria for inclusion was physical deployment of V2G technology for a specific use case. This excluded experimental research and narrow technology demonstration.
- 2. Stop-offs on the way: We scheduled 'stop-offs' with ten must-see landmark projects holding interviews to understand the customer offer, service readiness and operational findings.
- **3.** Our journal: All of this travel prompted reflection. We logged what we learned and teased out the transferability to the UK.

It's been an ambitious exploration, made possible only through the support of contributors on the way - for which we are very grateful. Here's what we found.


HALF OF PROJECTS ARE IN EUROPE

There are 50 V2G projects globally, of which 25 are in Europe, 18 in North America, and 7 in Asia. Asian participation has been more focused on vehicle-to-home and vehicle-to-building (V2H/B) services and contributing as a manufacturing partner than deployment.

SOCIAL ISSUES OFTEN OVERLOOKED

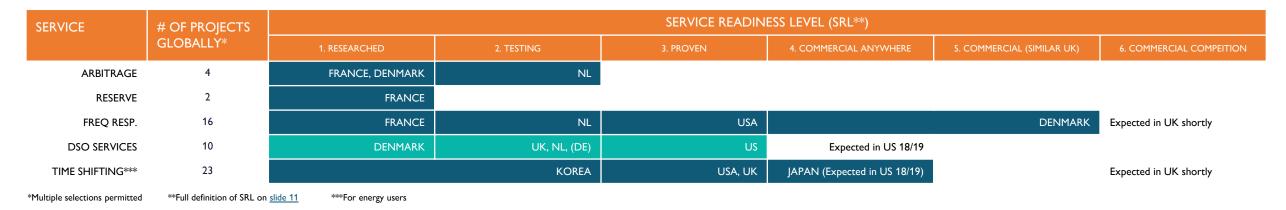
Almost all projects had a technical element (98%). Few focused on social aspects (27%). This reflects the sector's fledging status and early teething problems with V2G charger technology. Interviewees emphasised the need for greater focus on user behaviour going forward.

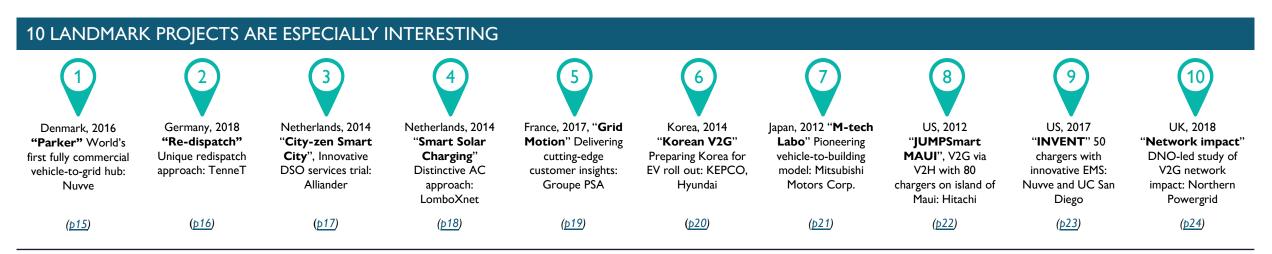
Although 12 vehicle manufacturers (OEMs) have participated in V2G projects, Renault Nissan Mitsubishi clearly dominates. This arguably reflects the legacy of the Fukushima disaster, and the successful integration of V2G within the CHAdeMO protocol (see p10).

DC solutions have dominated to date with DC chargers featured in 93% of projects. However there remains significant interest in AC with more AC compatible vehicles expected over the coming years.

EXECUTIVE SUMMARY

ONLY 10 V2G PROJECTS ARE PROVIDING DISTRIBUTION SERVICES – BUT UK DSOs CAN LEARN FROM V2G'S TRACK RECORD IN PROVIDING OTHER SERVICES


everoze


DISTRIBUTION SERVICES PROVIDED IN 10 PROJECTS

Services provided to Distribution System Operators (DSOs) are under-represented in global V2G projects - though this appears to reflect lack of DSO service maturity more than inherent V2G capability. Time-shifting and frequency response have been focus areas due to their high value.

DSOS CAN LEARN FROM V2G's TRACK RECORD IN OTHER SERVICES

A Service Readiness Level (SRL) summarises the techno-commercial readiness of V2G systems to provide a particular service in the UK. From our review of projects globally, distribution-level services have a low SRL of 3. Lessons learned from higher SRLs for other services should help accelerate roll-out. However, a key difference with distribution services is the locational specificity required, which complicates the aggregate statistical approach taken to guarantee availability and performance.

FOR NETWORK OPERATORS

		•
(
I	I]	
1	l J	

ADAPT INTERCONNECTION STANDARDS & PROCESSES: The EV community does not expect special treatment. But along with other distributed energy providers – such as domestic demand-side response – it expects requirements and costs to be *proportionate* to asset size.

2. CLARIFY THE VALUE OF DSO SERVICES: Global projects have tended to focus on other non-DSO services only because the value and service specification of other services have, to date, been clearer.

DESIGN SERVICE SPECIFICATIONS WITH V2G IN MIND: in

particular, consider the:

- i. response time required (with V2G able to provide a response within 2 seconds)
- ii. duration the service needs to be provided for (with a balance between power and length of service), and;
- iii. availability and performance levels provided by fundamentally less controllable assets.

FOR INDUSTRY

4. MATURE THE HARDWARE: Few bidirectional chargers and vehicles (particularly AC) are commercially available at present, with performance challenges and high costs. A greater range and maturity of technology is expected in the coming years.

	6	M	ව	
[

 TARGET SERVICES WHERE V2G ADDS VALUE: Smart charging (V1G) is sufficient for many services. However, V2G offers unique value in these scenarios: (1) for services where location matters; (2) locations with surplus solar capacity; (3) markets with high peak pricing or charges; and/or (4) for longer duration services. Yet even here, V2G charger cost reduction is essential for economic viability.

6. SEGMENT USER BEHAVIOUR: Customers have typically been a secondary consideration to date. Yet customers are diverse (families, fleets, car-share schemes and/or school buses all featured in this review). This diversity aids V2G and 24/7 service provision but means segmentation of customers is more useful than averages. Innovations should target mobility-as-service models.

FOR GOVERNMENT

Support and enable Network Operators and Industry to achieve the above, to unlock the potential of V2G

THIS REPORT IS JOINTLY COMMISSIONED BY UK POWER NETWORKS AND INNOVATE UK

INTRODUCTION

This report is commissioned as part of the TransPower portfolio, which explores vehicle-to-grid technology as one of several smart solutions capable of reducing reinforcement costs due to electric vehicle uptake.

The TransPower portfolio consists of UK Power Networks' activities contributing to several Innovate UK vehicle-to-grid (V2G) competition projects. TransPower is funded by the Network Innovation Allowance.

Under TransPower, UK Power Networks is evaluating the technical, commercial and customer proposition of V2G technology to the distribution network. The portfolio will investigate network impact and flexibility services for several different vehicle customer segments from domestic, to commercial and public charging through demonstrator trials and collaborative research and development.

FORWORDS

Vehicle-to-grid (V2G) technology could potentially be one of the most important technological innovations to hit the electricity network since distributed renewable energy became commercially viable. It could eventually millions of mobile energy assets can be deployed in an instant to prop up local networks and contribute to the national transmission system.

Earlier this year Innovate UK announced a series of large-scale V2G demonstrator projects. UK Power Networks is part of consortia that won a total of \pounds 11 million for five different projects, from a trial of 1,000 V2G fleet vehicles to helping a bus garage in London become the country's first clean green electric facility of its type. We have jointly commissioned this report, an international summary of V2G, to ensure that our activity is fully informed by lessons learned abroad.

The road to V2G isn't going to be easy. Significant technical challenges remain. The cost of bi-directional chargers is still prohibitive. And with a nascent market, electricity networks need to move quickly to enable the potential to be realised.

Yet the government's commitment to V2G demonstrator projects shows there is political will and strong interest from across the industry. The opportunity is waiting to be taken, the ambitious in the industry will reap the rewards.

THAZI EDWARDS LOW CARBON TECHNOLOGY & ELECTRIC VEHICLE PROJECTS UK POWER NETWORKS

The energy system is undergoing a pivotal change. Renewable generation is consistently increasing and demand loads are becoming active agents in the power system. Ubiquitous use of two way communication and closer interaction between assets and players on the grid will allow smarter interactions.

One thing seems certain – consumers will play a key role in driving the change as their energy needs for warmth, light, power and, increasingly, mobility change.

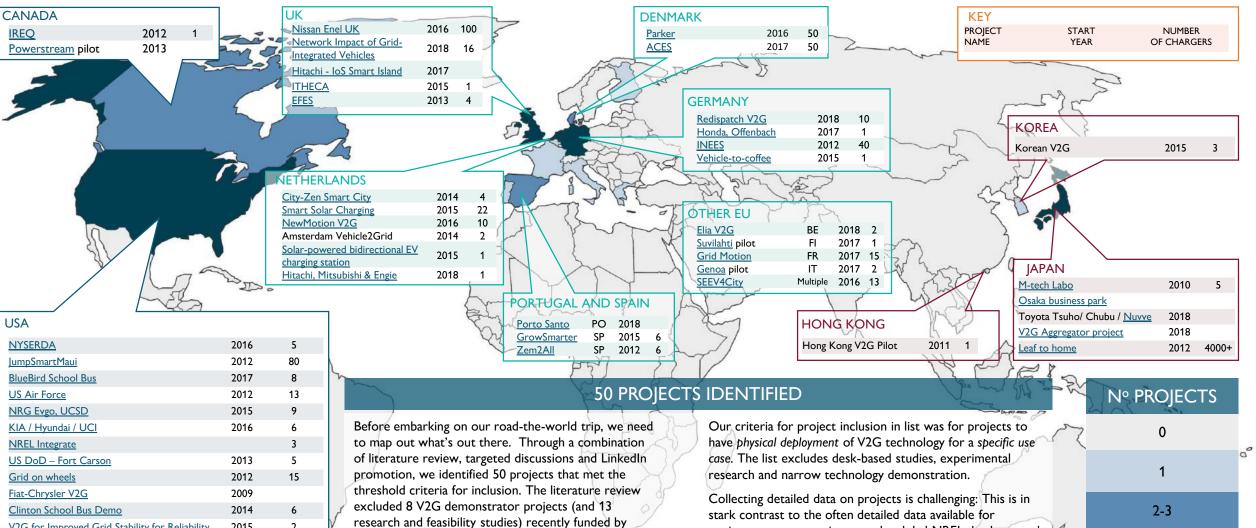
At InnovateUK, we're excited about V2G's potential role in this future energy system. We have been pleased to award funding to 21 vehicle-to-grid projects, to pay for research and design and development, with the aim of exploring and trialling both the technology itself and commercial opportunities. This represents almost £30 million in government funding.

Yet in order for us to effectively support businesses to develop and realise the potential of new ideas, it's also important that we remain abreast of the wider global context. We hope that the findings of this report help inform innovation in the UK, learning lessons to boost productivity and economic growth.

Through such innovation, consumers will move from being on the edge of the energy system to being at its heart. Now that's an exciting prospect indeed.

MARCO LANDI INNOVATION LEAD INNOVATE UK

CHAPTER 1 MAPPING OUT OUR JOURNEY


Every good roadtrip begins with a plan. What projects are out there? We survey the literature and contact leading experts to form a definitive list.

A LITERATURE REVIEW REVEALED 50 V2G PHYSICAL PROJECTS DELIVERING CLEAR USE CASES. EUROPE AND NORTH AMERICA ARE CLEAR HOTSPOTS OF ACTIVITY

Innovate UK, as documented in Appendix 1. A full

project list is provided in Appendix 1, and sources

logged in Appendix 2.

stark contrast to the often detailed data available for stationary storage projects on the global NREL database, and the data compilation on renewables projects conducted by Trade Associations.

> Note: Details are based on a review of public domain sources; however, we note that these datapoints are not always clear, and it is common for a project's number of chargers and trialled services to evolve over time.

UK Power Networks

everoze

Innovate UK

VCONSULT

Torrance School Bus

INVENT

UCLA WinSmartEV

Massachusetts School Bus Pilot

V2G for Improved Grid Stability for Reliability

2015

2015

2017

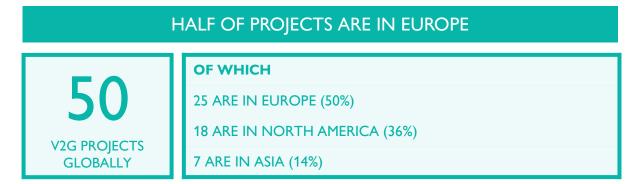
2014

2

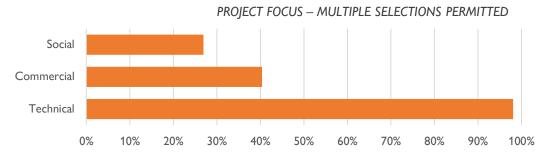
1

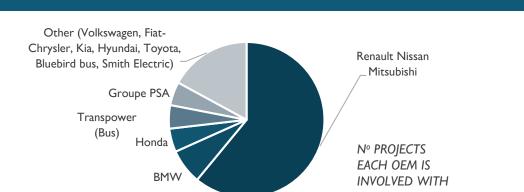
50

2


4+

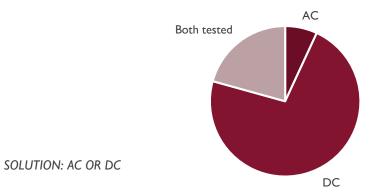
MOST PROJECTS HAVE HAD A TECHNICAL FOCUS – WITH USER BEHAVIOUR ONLY BEING EXPLORED MORE RECENTLY. JAPANESE OEMS HAVE DOMINATED THE MARKET.




There are 50 V2G projects globally, of which 25 are in Europe, 18 in North America, and 7 in Asia. In Europe, Northern European states dominate with the Netherlands, Denmark, UK and Germany the market leaders. Activity in the US is primarily in California, Hawaii and Delaware. Project data shows that Asian participation has been more focused on contributing as a manufacturing partner than being a home for deployment, with a few notable exceptions.

RENAULT NISSAN MITSUBISHI DOMINATE MARKET

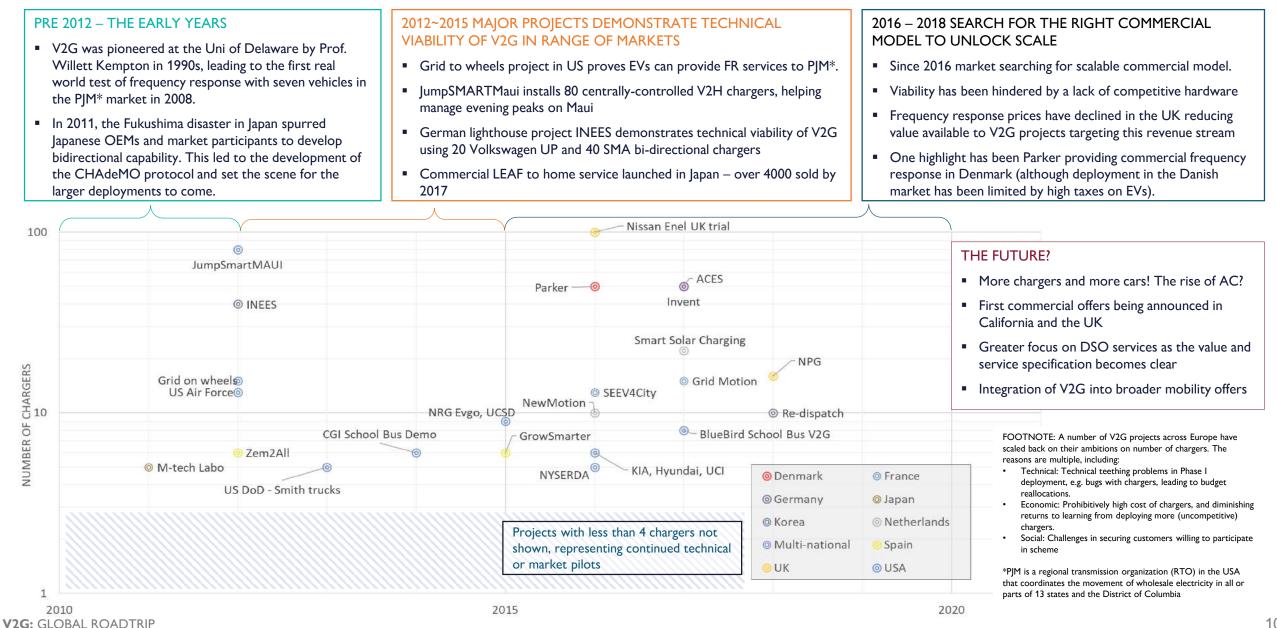
SOCIAL ISSUES OFTEN OVERLOOKED



Almost all projects had a technical element (98%). Few focused on social aspects (27%). This reflects the sector's fledging status and early teething problems with V2G charger technology. Interviewees emphasised the need for greater focus on user behaviour going forward.

Although 12 vehicle manufacturers (OEMs) have participated in V2G projects, Renault Nissan Mitsubishi clearly dominate. This arguably reflects the legacy of the Fukushima disaster, and the successful integration of V2G within the CHAdeMO protocol (see p10).

DC SOLUTIONS FEATURED IN 93% PROJECTS


DC solutions have dominated to date with DC chargers featured in 93% of projects. However there remains significant interest in AC, with more AC compatible vehicles expected over the coming years.

V2G HAS BEEN TECHNICALLY DEMONSTRATED FOR OVER A DECADE. THE SECTOR'S CHALLENGE HAS BEEN IDENTIFYING A VIABLE COMMERCIAL MODEL

PROJECT GOAL

To help assess the techno-commercial readiness of V2G systems to provide various services in the UK we have developed three indicators of maturity, called 'readiness levels'. The readiness levels reviewed are:

- Technology Readiness: focused specifically at chargepoint technology
- Market Readiness: focused on the openness of the market reviewed to V2G.
- Service Readiness: focused on the ability of V2G to provide a specific system service

Each is now discussed in more detail.

Technology Readiness Level (TRL)

TRL is a tool developed by NASA and used by a range of other organisations (e.g. European Commission) for monitoring technology support from basic research through to system demonstration for a range of conditions, and is commonly applied in the innovation space. In this report, we use TRL to describe the maturity of V2G chargepoint technology.

	TECHNOLOGY READINESS LEVEL											
1	2	3	4	5	6	7	8	9				
Basic principles observed	Technology concept formulated	Experimental proof of concept		Technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies)	the case of key	demonstrated in operational environment (industrially relevant	1	Actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies)				

Service Readiness Level (SRL)

We have adapted the TRL metric into a Service Readiness Level for the UK as follows: The techno-commercial readiness of V2G systems to provide a particular service in the UK.

		SERVICE REA	DINESS LEVEL		
1	2	3	4	5	6
FEASIBLE	TESTED/	PROVEN	COMMERCIAL	COMMERCIAL	COMMERCIAL
Service	TESTING	Demonstrated in	ANYWHERE	(SIMILAR TO UK)	COMPETITION
theoretically	Demonstrated	small-scale	Service being	Service being	Service being
feasible	that system can	commercial trial	procured	procured	procured
	technically provide	(most likely with	commercially from	commercially from	commercially from
	the service (i.e.	Gov. support and	V2G, in any	V2G in market	V2G in market
	proof of concept	funding)	market not	that is not	that is not
	trial)		necessarily similar	vertically	vertically
			or applicable to	integrated	integrated, with
			the UK		some degree of
					competition from
					V2G providers

Market Readiness Level (MRL) A country's procurement readiness for V2G, focusing on the openness of demand response markets from distributed assets, including any regulatory barriers.								
MARKET READINESS LEVEL								
LOW	MEDIUM	HIGH						
Score taken directly from 'DSR enabled energy markets' categorisation in Cenex (2018) or if market not covered qualitative assessment by Everoze and EVConsult. Specific regulatory barriers identified through interviews.								

CHAPTER 2 STOP-OFFS ON THE WAY

Right, so we're off! Time to see the must-see landmark projects! We shortlist 10 showcase projects and marvel at what's been achieved, taking Dashboard Snapshots along the way.

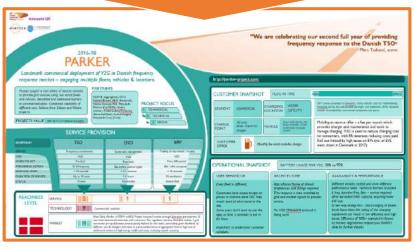
0

WE SELECTED 10 LANDMARK PROJECTS FOR DETAILED REVIEW ON OUR GLOBAL V2G ROADTRIP. THESE ARE FEATURED ON THE FOLLOWING SLIDES.

1. PICKING OUR LANDMARK PROJECTS

The projects on the following 10 slides have been shortlisted as landmark must-see projects, based on the following criteria:

- Focus on DSO services (where possible)
- Breadth of customer offer and geography
- Project maturity, with a preference for projects where clear learnings and direction for future development and implementation can be extracted
- Applicability to UK.


2. DEVELOPING DASHBOARDS

We developed Project dashboards to enable systematic comparison of projects. They were populated based on literature review and following targeted interviews with project representatives.

OUR JOURNEY: KEY LANDMARKS

1	Denmark, 2016 "Parker" World's first fully commercial vehicle-to-grid hub: Nuvve, <u>p15</u>	6	Korea, 2014 " Korean V2G " Preparing Korea for EV roll out: KEPCO, Hyundai, <u>p20</u>
2	Germany, 2018 "Re-dispatch" Unique redispatch approach: TenneT, <u>p16</u>	7	Japan, 2012 " M-tech Labo " Pioneering vehicle-to-building model: Mitsubishi Motors Corp, <u>p21</u>
3	Netherlands, 2014 " City-zen Smart City ", Ground-breaking DSO services trial: Alliander, <u>p17</u>	8	US, 2012 " JUMPSmart MAUI ", V2G via V2H with 80 chargers on island of Maui: Hitachi, <u>p22</u>
4	Netherlands, 2014 " Smart Solar Charging " Distinctive AC approach: LomboXnet, <u>p18</u>	9	US, 2017 " INVENT " 50 chargers with innovative EMS: Nuvve and UC San Diego, <u>p23</u>
5	France, 2017, " Grid Motion " Delivering cutting-edge customer insights: Groupe PSA, <u>p1</u> 9	10	UK, 2018 " Network impact " DNO-led study of V2G impact on network: Northern Powergrid, <u>p24</u>

V2G: GLOBAL ROADTRIP

SERVICES ARE CHARACTERISED BASED ON THEIR TECHNICAL PARAMETERS

EVCONSULT

The table below characterises the services provided by V2G systems, in a way that strikes a balance between standardisation and presenting market-specific features.

A defined technical product provided to System Operators, Networks Operators, "SERVICE" utilities or consumers, such as frequency response or constraint management.

CATEGORY	DEFINITION	OPTIONS
Beneficiary	The party that benefits from the service.	 TSO: Transmission System Operator DSO: Distribution System Operator TPI: Third Party Intermediary (an actor participating in energy markets) Consumer: Onsite energy consumer, behind-the-meter
Service	A defined technical product provided to System Operators, Networks Operators, utilities or consumers	 Frequency response – fast acting service seeking to keep system frequency within specified limits Reserve – slower acting service provided over a longer duration Arbitrage – buying energy at low prices and selling at high prices Distribution services – services to the DNO or DSO, typically involving constraint management or voltage control Time shifting for energy users – shifting when customers use energy thereby reducing charges and/or increasing self consumption
V2G	Type of service provided	 V2G: Vehicle-to-grid. Vehicle provide services to regional network or national system V2B: Vehicle-to-building. Vehicles are integrated into (non-residential) building energy management, providing behind the meter services V2H: Vehicle to home. Vehicle provides services to home with chargers behind the meter V1G: commonly referred to as 'Smart Charging', the vehicle only supports uni-directional charging (no exports) and provide services by altering its charging load.
When to act	When service is provided	 Pre-fault: before a fault is experienced on a system, for instance frequency response with a tight trigger frequency Post-fault: after a fault has occurred
Triggering Action	The mechanism through which a response is triggered	 Grid frequency: e.g. frequency hits set threshold such as 49.9Hz Back office control signal: e.g. event beneficiary sends signal to vehicle that triggers a response Other local signal: to be defined N/A - scheduled: Service is contracted to commence at a pre-agreed time
Response speed	The time to provide full response after receiving trigger	Subject to service specification but typically: Seconds for frequency response Minutes for reserve N/A - scheduled
Duration of service	For how long service is required	 Subject to service specification but typically: < 1 hour for frequency response Minutes to hours for reserve 1-4 hours for peak shaving & constraint management

"We are celebrating our second full year of providing frequency response to the Danish TSO"

- Marc Trahand, nuvve

low efficiency and high losses. Efficiency of

degradation impact (see INVENT slide for

90%+ expected in future. iii) battery

further details)

²⁰¹⁶⁻¹⁸ PARKER

Landmark commercial deployment of V2G in Danish frequency response market – engaging multiple fleets, vehicles & locations.

Project sought to test ability of electric vehicles to provide grid services using real world fleets. Identified and addressed barriers to commercialisation. Compared capability of different cars. Follows from Edison and Nikola projects. Linked to ACES project on Bornholm.

PROJECTS VALUE DKK 14,731,471 (financed by ForskEL)

PARTNERS DTU Elektro/PowerLabDK (Project lead), NUVVE (Aggregator), Nissan, Groupe PSA, Mitsubishi Motors (CarOEMs), Insero (Other),

Corp (Tech)

Frederiksberg Forsyning (Host and

Fleet), Enel (Charger), Mitsubishi

PROJECT FOCUS
1. COMMERCIAL
2. TECHNICAL
3. SOCIAL

put in for them.

customer schedule.

Important to understand

SERVICE PROVISION

BENEFICIARY		TSO		DSO		ТРІ		
SERVICE		Frequency cont	ainment	Constraint	management	Trading on day-a	ihead / intraday	
V2G?		V2G		V	/2G	V20	G	
WHEN TO ACT		Pre-fau	t	Pos	t-fault	Price diffe	rential	
TRIGGERING ACTION		Grid frequ	ency	Backoffice	control signal	Bid / offer ad	ccepted	
RESPONSE SPEED		< 10 seconds		< 3-5	< 3-5 minutes		ites	
DURATION OF SERVICE	OF SERVICE Up to 30 mins			1-4	hours	15 min blo	cks	
STATUS		Prove	n	Rese	earched	Researched	i / /	
READINESS LEVEL	SER	/ICE	i	1				
	TEC	HNOLOGY						
Main Daily Market is FCR-N in DK2. Project accessed market through Energinet pa now have commercial contracts with customers. Key regulatory barriers identified in connection pre-qualification process poorly defined for this asset, particularly given l different cars & chargers and need to assess performance at aggregated level ii) hig settlement meters iv) high energy tariffs and taxes, including double counting								

CUSTOM	er snapsho ⁻	PLUG-II	PLUG-IN TIME		5	24hrs			
SEGMENT	COMMERCIAL		CHARGING WORK OCATION (UTILITY)		F	ice provided to Energinet. Utility vehicles used by Frederiksberg during day and parked overnight and weekends. Other locations nunicipalities, commercial companies and ports.			
CHARGE POINT	50 units ENEL 10kW DC charger	VEH		Vissan LEAF 30kWh, 10x Vissan E-NV200 24 kWh & Mitsubishi Outlander 2kWh	provides charger and maintenance and tools to manage charging. V2G is used to reduce charging				
CUSTOME OFFER	R 🎒 Mor	ee which in	e which includes charger for consumers, with FR revenues reduce which includes charger went down in Denmark in 2017)		it limited by high taxes on EVs (no. of EVS				
OPERATIO	ONAL SNAPSH	ют	ВА	ATTERY USAGE F	OR V	′2G: 3 (0% to 95%		
USER BEH	AVIOUR		ARCHITECTURE				AVAILABILITY & PERFORMANCE		
Every fleet is different. Customers have access to app on phone to indicate what state of charge they would need at what point in the day.					references and charge required. This resource is then matched to rid and market signals to		preferences and charge required.performance levels. Technical bThis resource is then matched toincluded:grid and market signals toi) long duration freq. bias – servprovide service.often exceeded kWh capacity r		Different vehicles tested and show different performance levels. Technical barriers included: i) long duration freq. bias – service required often exceeded kWh capacity requiring lower kW bids ii) two way energy loss - (dis-
	don't want to use then a schedule is	For V2G CHAdeMO protocol is being used.			is	charging at power levels lower than the rating of the charging equipment can result in			

everoze

"Let's simplify regulations for distributed assets"

- Marcus Fendt, The Mobility House

2018-21

REDISPATCH V2G

Virtual renewable power transport through V2G : reducing transmission constraints & deferring network investment

Demonstration project proving technical ability to use TSO's own field service fleet in addressing transmission constraints in Germany. Highly distributed chargepoint locations. Chargers installed; comms protocol under development

PROJECT VALUE Corporate funding + TenneT

SERVICE PROVISION

BENEFICIARY		TSO			
SERVICE		TSO constraint manageme	nt	1	
V2G?	\	V2G (+ V1G at northern si	tes)		
WHEN TO ACT		Pre-fault			
TRIGGERING ACTION		TSO control signal			
RESPONSE SPEED		From seconds up to 2 mir	iutes		1
DURATION OF SERVICE	DURATION OF SERVICE		Hours – potentially up to 2-3 days		
STATUS		Testing			
READINESS LEVEL	SERV				gress. Score will be 3 once project is complete.
	MAR		High. barrier levies o	Active demand side ross include that storage	g technology is mature, but not yet in series production. esponse market. Non-vertically integrated market. Regulatory e not yet a regulatory category, creating 'double-charging' problem consumer. Necessity for each vehicle to be individually registered

0hrs 24hrs CUSTOMER SNAPSHOT PLUG-IN TIME WORK Field service fleet is expected to provide mobility services in a COMMERCIAL CHARGING At substations & at relatively routine, scheduled manner during standard working TSO's service cars. **SEGMENT** HO office. Multiple LOCATION driving ~150km/day hours. Assets will be plugged in and available overnight. across north & + 2 HQ cars. south Germany Potential commercial value is very high. In 2017, 5.5TWh of EVTEC Charger Nissan LEAF & CHARGE 10kW DC V2G in VEHICLE renewables was curtailed in Germany, at a cost of €1.4bn. ENV200, 40kWh. South. POINT ~10 vehicles. Network upgrades to manage this could cost €18bn. 5.5TWh 7.6kW V1G in north. could charge $\sim 2m$ EVs for one year. N/A - project has technical focus at present. There has CUSTOMER Constraints are most severe in the north (originating in wind not been a need to frame customer offer due to TenneT OFFER being the fleet owner. However, the project aims to plant), though solar-driven constraints are emerging as a engage other vehicle users in future. challenge in the south. BATTERY USAGE FOR V2G: **OPERATIONAL SNAPSHOT** Permission from Nissan to drop State of Charge (SoC) to 35% USER BEHAVIOUR ARCHITECTURE **AVAILABILITY & PERFORMANCE** Data available from 2019. Not a primary focus of project -The Mobility House (TMH) provide focusing on TSO-owned fleet load and energy management vehicles with a routine driving software, communication & control One performance challenge that behavior at first. technology. TMH bundles V2G will be probed is the ability of V2G assets together and continuously to respond to a diversity of However, longer-term the reports availability (kWhs) to TSO. constraint scenarios, reflecting the aspiration is to explore other user TenneT sends a request to TMH, diversity of wind conditions. This types with different driving patterns which can be accepted or rejected. can range from sudden storms - particularly targeting vehicles that One key objective to maximise (lasting hours) through to 2-3 day can be plugged-in during work comms system learning through weather cycles. daytime hours, to balance out fleet utilising multiple distributed

locations.

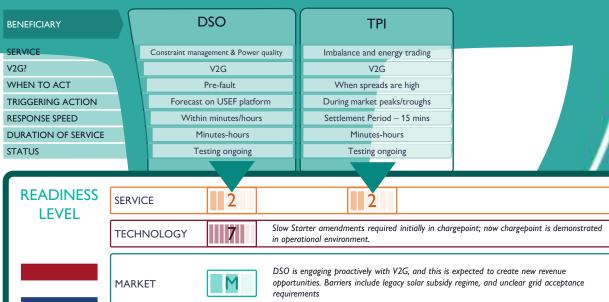
availability in the EV portfolio.

everoze

"Let's revise grid acceptance standards for V2G chargepoints"

- Marisca Zweistra, Alliander

2014-19


CITY-ZEN

Small-scale commercial trial of DSO service, engaging diverse customers: commercial, individual & car-sharing

Dutch project with 4DC V2G chargers – with pioneering focus on DSO services. Adopting a holistic commercial, social and technical approach, with multiple power sector use cases.

SERVICE PROVISION

	CUSTOM	ER SNAPSHOT	PLU	JG-IN TIME	Oł	Irs Variety of customers:	variable	24hrs
	SEGMENT		HARGI DCATI	in the internet of		 2 commercial mi 1 individual with 1 individual with 	inivan users irregular driving behaviour routine behaviour (corporate lease) app as part of car-sharing solution.	
	CHARGE POINT	chargers 10 kW VEHIC		2 Mitsubishi Outlander, 2 Nissan EV200 (mini-an), 1 Nissan LEAF			value still to be quantified. A key challenge i such as grid congestion management are no l in the market.	
				ers paid flat rate of 10 nts/hour of plug-in time sed by public funding) V2G benefits are expected to be particularly high will customers have onsite solar and consume energy in evenings.			en	
	OPERATIO	ONAL SNAPSHO	Т	BATTERY USAGE Minimum SoC of 20-30%			point, immediately bring down to 45% SoC.	
l I	USER BEH	AVIOUR		ARCHITECTURE			AVAILABILITY & PERFORMAN	NCE
	USER BEHAVIOUR Commercial customer well-engaged; this is believed to partly be due to their strong green credentials at management level and emphasis on resilience, and maximising PV self- consumption. Payment of 10Eur cent/hr helps engagement but is subsidised; concerns if payment is at (lower) market rates.			Project adopts the Energy Framework All stakeholders car system needs day-al ahead or on the spo	(US n aco nead	EF) platform. cess forecast	Pleased with response time; on marginally slower than stationa batteries. Biggest challenge was availability of assets for usage (i plug-in time plus appropriate St of Charge - SoC). This was particularly problematic given t small scale of the pilot (4 charg meaning that during some perior storage was not available.	ry s with i.e. tate che gers),

2014-2019 SMART SOLAR CHARGING

Pioneering AC V2G project with 22 chargers installed as part of city car share scheme and solar in Lombok neighbourhood.

The core focus of this project is developing an AC standard for V2G, and developing a system that facilitates and speeds up the rollout of electric vehicle charging infrastructure and solar power. Follow on project is seeking to scale up to 1000 chargers across region of Utrecht

PROJECT VALUE Supported by a grant from ERFD

PARTNERS		
Lomboxnet	Lead	
Last Mile Solutions	СРО	PROJECT FOCUS
Stedin	DSO	1. TECHNICAL
Renault	OEM	₽ 2. COMMERCIAL
ElaadNL coope	eration of DSOs	SOCIAL

SERVICE PROVISION

BENEFICIARY		DSO	TSO	TPI (=main focus)		
SERVICE		Constraint management	Frequency response	Imbalance and energy trading		
V2G?		V2G	V2G	V2G		
WHEN TO ACT		Pre-fault	Pre-fault	When spreads are high		
TRIGGERING ACTION		Forecast on USEF platform	Forecast on USEF platform	During market peaks/troughs		
RESPONSE SPEED		Within minutes/hours	Within minutes/hours	Settlement Period = 15 mins		
DURATION OF SERVICE		Minutes-hours	Minutes-hours	Minutes-hours		
STATUS		Researched	Researched	Researched		
READINESS LEVEL	SERV	Chamabi	Dint will be market ready by end of 2018. T	The vehicles will arrive in same time slot		
	TECH		oint will be market ready by end of 2018. The vehicles will arrive in same time slot still in prototypes.			
	MAR	KET Opportur	engaging proactively with V2G, and this is e ities. Barriers include legacy solar subsidy r nents. Dutch grid is not ready for storage.			

"We are developing a scalable system to facilitate the rollout of EV charging and solar power with an AC standard." - Robin Berg, Lomboxnet

		LUG-IN TIME	0hrs		variable	24hrs
	SEGMENT CITY CAR SHARE SCHEME	PUBLIC	vehicle (c	only 60	icle is standing idle 70% vs. >90% for ge, with idle period	[,] private vehicle).
	CHARGE AC 22 kW By Seers Group & The People Group (GE in past)	LE 22 Renault Zoe (40kWh)	Insights ex	Insights expected at end of 2019		
		haring scheme – nth. Includes km and				
ſ	OPERATIONAL SNAPSHOT	BATTERY USAGE Small amount (%) of bar		e more la	ter if results show that de	egradation is small.
	USER BEHAVIOUR	ARCHITECTURE			AVAILABILITY &	& PERFORMANCE
	 Insights expected at end of 2019 With present amount (22) of 22 kW unidirectional charging stations we see on average: 10% occupied and charging; 50% occupied and NOT charging 	Public charge points connected to the lo in a neighbourhood of solar energy. V2G services will be through USEF frame	with high upta	·	Renault Zoe car capabilities will a	st prototypes of the with bidirectional rrive in Utrecht. : in 2019. Results are

"We need more efficient interconnection standards"

- Paige Mullen, Nuvve

2017-19

GRID MOTION

Large scale, privately funded demonstration of V1G and V2G – targeting frequency response, arbitrage and more

PARTNERS

Trial is testing ability to provide grid balancing services through both V1G and V2G. V2G element is fleet of 15 B2B EV Peugeot iOn or Citroën C-ZERO vehicles with Enel bidirectional charging stations. V1G is 50 (Nuvve AC) chargers installed at residential properties.

PROJECT VALUE PRIVATELY FUNDED

SERVICE PROVISION

BENEFICIARY		TSO			ТРІ	ENERGY USER			
SERVICE		Frequency Response			Trading on day-ahead / intraday	Reduction Time of Use Charges			
V2G?			V2G		V2G	V2H/B			
WHEN TO ACT			Pre-fault		Price differential - Bid/Offer called	Peak charges			
TRIGGERING ACTION		(Frid frequency		Bid/Offer called	Scheduled			
RESPONSE SPEED		15 se	c – 15 min duration		< 15 minutes	Scheduled			
DURATION OF SERVICE			1 week bids		15 min blocks	Subject to charges (hours)			
STATUS		Resea	rched – plan to test		Researched – plan to test	Researched			
READINESS	SERV	'ICE	1		1	1			
FRANCE					Commercially available chargers.				
	MAR	KET	H I	relating	arket well developed. Market is not verticall to introduction of diverse, distribution level ation limits to trade and access frequency r	kW-scale resource i.e. minimum			

CUSTOM	IER SNAPSHO	T PLU	IG-IN TII	ME	01	nrs	variable 24hrs
SEGMENT	Commercial fleet on airport grounds (airport supplier)		CHARGING OCATION				es and plug-in behaviour. Fleet use is 24/7 eater use during day.
CHARGE POINT	CHARGE V2G - Enel 10 kW DC, (V1G is using VEHICLE			eugeot iOn itroen C- O		Project is developed as the first V2G project established France. V2G chargers installed with a commercial fleet V1G at consumer homes. The study is key to demonstr feasibility commercially to project participants and to b	
CUSTOME OFFER	ER Fre	ee charger				down barriers for	r market access of DERs in France.
OPERATIO	ONAL SNAPSH	нот (BATTE	RY USAGE F	OR	V2G (30-95%)	
USER BEH	USER BEHAVIOUR			ARCHITECTURE			
			ARCH	TECTURE			AVAILABILITY & PERFORMANCE

everoze

"V2G can help shave summer

and winter peaks"

- Mr Son, Chan, KEPRI

2015-17

KOREAN V2G

KEPCO project laying technical groundwork for EV roll out in Korea

Project is part of a broader Vehicle Grid Integration
programme seeking to smooth roll out of EVs in
Korea. V2G work has focused on development of
bidirectional DC chargers and interface protocol,
with testbed testing various chargers. Hyundai
Mobis were first to have bidirectional charger
approved.

PROJECT VALUE Private funding

PARTNERS

 KEPCO
 LEAD

 HYUNDAI
 EV

 MOBIS (Charger), I&C (IT), PNE (Charger), KDN (EMS), Nemo (Business Model)
 1. TECHNICAL

SERVICE PROVISION

BENEFICIARY		ENER	ENERGY USERS		
SERVICE		Time-shi	Time-shifting for energy users		
V2G?			V2G		
WHEN TO ACT			Peak		
TRIGGERING ACTION			Market signals		
RESPONSE SPEED			< 10 seconds		
DURATION OF SERVICE			1 – 4 hours		
STATUS			Tested		
READINESS	SERV	ICE	2		
LEVEL	TECH	INOLOGY	6	Prototy	
				Active d	
	MAR	KET	L .	amendn	

I	CUSTOM	er snapsho	ТР	PLUG-IN	N TIME	0hrs			discharge	C	charge	24hrs
	SEGMENT	COMMERCIAL (research centre)	CHAR LOCA		COMMERCIAL (research centre)	W	ork time and	disc	been charged d charged during c different tested	ay time	0	or after-
	CHARGE POINT	2 x AC 6.6kW charging / 3.3kW discharging. 1 x 10kW DC	VEHIC	CLE (2 Hyundai '28kWh1xAC,1xDC) 1 ITeng (20kWh AC)		o real custom ogramme	ners	- researchers co	nductin	ng V2G	
	CUSTOME OFFER	R N/A										
ſ	OPERATIONAL SNAPSHOT BATTERY USAGE											
		JNAL SNAPSI	HOT	BA	TTERY USAGE F	OR V	2G (30-100%	%)				
	USER BEHA		НОТ		ATTERY USAGE F	OR V	2G (30-100%	%)	AVAILABILIT	r & PEI	RFORMA	NCE
	No real use on simulate with full ava (Technical I Project is n	AVIOUR ers. Full control of E d user usage patter ailability. Lab Test) ow working on finc e of V2G SOC for	EVs rns	AR Cu sys pro loc		anagen V2G s De inst ition li	nent ervice alled at a ne	%)	AVAILABILIT Response with achieved. 3 tested EVs r types of DR s 95% accuracy.	nin 10 s respond gnals w	seconds ded to vai	rious

everoze

"We proved the technical feasibility of vehicle-to-building five years ago. The next challenge is economics" - Project representative, Mitsubishi Corp.

2010-13 M-TECH LABO

Early V2B trial using 5 iMiEVs, reducing peaks by 12.7% at Mitsubishi Motors' office – together with second life battery.

Project was set in Mitsubishi Motors' Nagoya plant as a part of Keihanna Smart Community project. The project developed and demonstrated an EMS to deliver peak shaving. Demonstration ran for 1 year.

PROJECT VALUE 66% Government funded

	PARTNERS		
	MITSUBISHI CORP	Lead	
		ORS OEM	1. TECHNICAL
J	MITSUBISHI ELECT	RIC EMS	
	TOKYO INSTITUTE O	F TECH Advisory	
_			

SERVICE PROVISION

BENEFICIARY		ENERGY USERS	;
SERVICE		Peak shaving	
V2G?		V2B	
WHEN TO ACT		Scheduled	
TRIGGERING ACTION		Forecast	
RESPONSE SPEED		N/A	
DURATION OF SERVICE		3 hours (1pm-4pm)	
STATUS		Tested	
READINESS LEVEL	servi tech	CE 2	Custom
	MAR		EV upto achieva

CU	JSTOMER	SNAPSHO	T PLU	JG-IN TIME	(Ohrs		day-time	24hrs	
SEC	GMENT	COMMERCIAL	CHARGI	W/ORK		Only weekday Cars charged o				
	HARGE DINT	3 kW DC, Mitsubishi Electric	VEHICLE	5 Mitsubishi iMiEV cars, 16kWh each.		Mitsubish	ni M	s at the Administration Building of i Motors Corporation's Nagoya		
-	CUSTOMER		otors' employees selected, to umer engagement.				oroje	e selected based on their commute to roject and make use of the vehicles on v basis.		
0		- F 17	00							
			0 0							
	PERATION	IAL SNAPSH			AGE FC	DR V2G: not stat	ted.			
OP	PERATION	IAL SNAPSH					ted.	AVAILABILITY & PERF	FORMANCE	

everoze

"We delivered V2G at scale...from real world families we had no control over"

- Project representative, Hitachi

2012-16

JUMPSMARTMAUI

Deployed 80 V2H chargers which demonstrated discharge in response to grid signals over the 6-9pm peak period, thereby helping manage distribution system loads and frequency events.

The project was part of major broader smart grid project seeking to integrate renewable energy, electric vehicles, energy storage, and controllable loads in Maui, Hawaii.

PARTNERS HITACHI

NEDO

Lead Funder **PROJECT FOCUS** Mizuho Corporate Bank and Cyber Defense 1. TECHNICAL Institute, the State of Hawaii; the County of Maui; Maui Electric Company and Hawaiian Electric Company; Hawaii Natural Energy ➡ 2. SOCIAL Institute; Maui Economic Development Board, Inc.; University of Hawaii Maui College ➡ 3. COMMERCIAL

PROJECT VALUE Unknown

SERVICE PROVISION

BENEFICIARY		DSO/TSO (same organisation on Maui)			DSO/TSO (same organisation on Maui)			
SERVICE		Peak reduction			Frequency response*		nse*	
V2G?		Yes through	peak reduction	at homes	Yes through	peak reductio	n at homes	*Service provided in the demonstration project
WHEN TO ACT		Forecast	based on syste	em req.	Char	nge in freque	ency	led by Hawaiian Electric
TRIGGERING ACTION		Backo	office control s	signal	Contro	l signal from	DSO	that followed JUMPSMartMaui
RESPONSE SPEED			< 4 secs			< 4 secs		
DURATION OF SERVICE		3	hours (6-9pm	ı)		2 hours)		
STATUS			Proven			Proven		
				, J				
READINESS	SERV	'ICE	3	(in trial)		3	(in trial)	
LEVEL	LEVEL TECHNOLOGY Commercially available							
	MAR	KET	M>H	revised		by broader	range includin	although limited to I&C. Now g V2H. Interconnection standards n

CUSTOMER S	SNAPSHO	T PLUG-IN TI	ME	Ohrs night-time 24
SEGMENT	INDIVI- DUAL	CHARGING LOCATION	НОМЕ	Lowest average SoC was at 7pm but even then half o vehicles had 70% or more SoC.
CHARGE POINT	6kW Hitachi DC	VEHICLE	Nissan LEAF 80 cars	Lack of incentive to plug in may have reduced how often people plugged in when they got home, particularly when they could charge using the public
CUSTOMER OFFER	du	ee charger provided, with onomic incentive. Particip e to environmental or co asons	oants involved	fast charging stations. Complicated to get new users interested. Significant and targeted recruitment campaign, with jargon free branding, marketing material and one to one visits

PROJECT WEBPAGE

OPERATIONAL SNAPSHOT

USER BEHAVIOUR

80 families using the vehicles 'normally', typically plugging in on return from work. This meant limited diversity and restricted when V2G could be provided. Families often used other DC fast chargers, which meant only plugged in on average every other day. Trial ran in 2013-2014 with V1G which made easier to introduce V2G as good data on driving patterns had already been recorded.

BATTERY USAGE FOR V2G: 30-95%

ARCHITECTURE

Energy control via autonomous, decentralized system. Hitachi developed integrated Demand Management System (DMS), with localised autonomous DMS. EV charging utilised these DMS with EV Control Centre to create a charging schedule so as to fill up the gap between the estimated power generated by renewable energy and load of the next day. It then takes account of each EV's connection status to the normal charger and the desired charge end time to instruct the charge start time to each EV. ChaDeMo protocol used.

AVAILABILITY & PERFORMANCE

Export limited to 1kW, although 6kW modelled. Interconnection standards were onerous and Hawaii specific. (These have now been replaced with US-wide UL certificate which is helpful). Forecast of vehicle behaviour in aggregate was challenging. Hawaiian electric have now revised demand response programme. V2G not directly included but V2H as a form of DR will be eligible. Bidding underway for delivery late 18/19. EVs are very fast and flexible and when combined with other resources can be very valuable to grid.

Networks Delivering your electricity

everoze

"We are making commercial offers in California"

- Marc Trahand, Nuvve

2017-2020

INVENT

Large scale trial on UCSD campus, with multiple vehicle types and chargers, supporting move towards commercial deployment in California

Trial on UCSD 45 MW micro-grid, with significant amount of solar/storage/generation. Project will test vehicle-to-building (V2B) integration, demand response, freq. regulation and interaction with solar forecasting. AC & DC chargers tested with 6+ types of vehicles.

PROJECT VALUE \$7.9 million – part funded by CA Energy Comm.

Martiners Nuvve Aggregator Mitsubishi, BMW OEMs PROJECT FOCUS & Nissan OEMs 1. COMMERCIAL UCSD Research 2. TECHNICAL Nuvve, Hitachi Chargepoint Operators 3. SOCIAL

SERVICE PROVISION

BENEFICIARY		TSO / DSO		TSO	ENERGY USERS				
SERVICE		Demand Re	esponse / Peak reductior	n	Frequency regulation	Reduction of demand charges			
V2G?			V2G		V2G	V2H/B (although can be stacked)			
WHEN TO ACT		Stress ev	ent called by TSO/DSO)	Continuous response to signal	Peak charge periods (kW)			
TRIGGERING ACTION		Stress ev	vent called by TSO/DSO		Grid frequency (AGC signal)	Approach of unusual load peak			
RESPONSE SPEED		Alerts u	usually issued day ahead		< 4 seconds	15-min intervals			
DURATION OF SERVICE			4 hours		Continuous	Hours			
STATUS			Proven		Tested	Tested			
READINESS LEVEL	SERV	/ICE	3		2	2			
	TECHNOLOGY AC chargepoints UL listed and commercially available DC chargepoints have been operated thoroughly in testing environment and commercially available.								
	MARKET Value streams available in DSO and TSO level demand response markets and behind-th include quickly evolving interconnection standards for inverters, market access options f electric vehicles and compensation mechanisms between retail and wholesale.								

CUSTOM	ER SNAPSH	OT PLUG-IN	I TIME	Ohrs	variable	24hrs		
SEGMENT	WORK (University Campus)	CHARGING	(I Iniversity	Predominantly workplace charging during day, with university fleet charging at night.				
	9 AC Nuvve PowerPorts (18kW) 9 DC Hitachi (6 kW) 30+ TBD (Phase 2/3)	VEHICLE k ^k	Mitsubishi Outlanders (12 Wh) ; 7 Nissan LEAFs (24-30 Wh); 9 Chevy Bolts/BMW s/Daimler Smart/Model LEAF; 30 + TBD (Phase 2/3)	Program wh transport st	Ilaboration with UCSD's Tritor ich operates a fleet of EVs that udents around campus at night.	safely		
CUSTOME OFFER	R	Free charger, park	ing and electricity	Collaboration also with UCSD's solar forecasting lab for integration into services provision as well as with other stationary storage projects located on campus.				

PROJECT WEBPAGE

OPERATIONAL SNAPSHOT

USER BEHAVIOUR

There is a challenge to predicting what capacity you can provide to the market, particularly when there are only a small number of cars (only above 100 can you really start to use statistics). 'Real world' issues include: (1) unexpected damage to project vehicles, (2) drivers' varying personal schedules and (3) optimizing plug-in time by assigning convenient parking locations to project drivers.

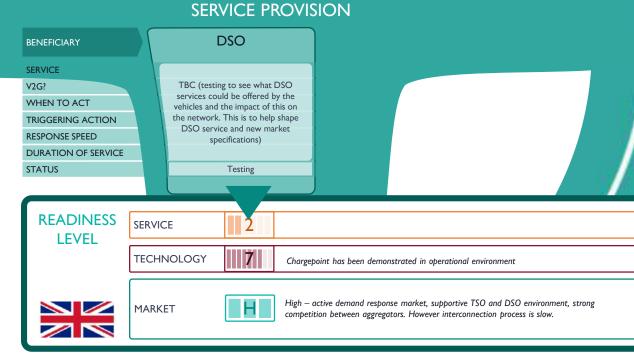
BATTERY USAGE FOR V2G: OEM and model dependent

ARCHITECTURE

Nuvve GIV[™] aggregation platform. Exploring interaction with advanced solar forecasting, integration with building energy management systems and response to TSO & DSO-level demand response markets. Platform has been providing frequency regulation to TSOs since 2009.

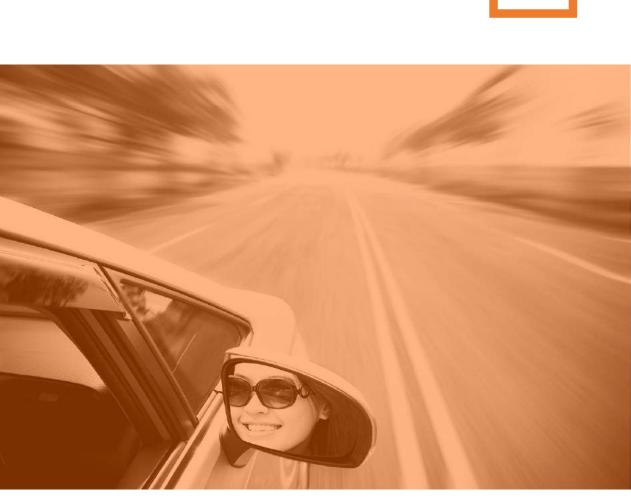
AVAILABILITY & PERFORMANCE

Challenges are: 1) Availability of cars 2) EVSE reliability 3) Adapting system to local requirements, 4) Market Access Paths 5) Battery Degradation – V2G does cause some additional degradation but much smaller than that experienced through driving behaviour (and particularly regenerative braking). Potential damage depends on service, with full charge/discharge cycles being the worst. Car manufacturers may move towards certifications to make it a requirement to be an approved aggregator or charger.



2017-20 NETWORK IMPACT OF GRID-INTEGRATED VEHICLES

DNO project aiming to understand impacts and interconnection process for V2G-enabled EVs on the distribution network.


"Through this project we hope to gain the evidence to streamline the interconnection process in the UK" - Paige Mullen, Nuvve

CUSTOM	ER SNAPSHC	т	PLUG-I	N TIME	0)hrs		24hrs			
SEGMENT	COMMERCIAL (NPG fleet)	L CHARGI				Utilisation is still to be determined – likely that N will mainly be plugged in overnight. NPG employe be able to use during day time as well.		ged in overnight. NPG employees may			
CHARGE POINT	19x MagnumCap 10 kW DC	10 VEHICLI		VEHICLE		E Nissan NV200s and possible Nissan LEAFs		Given fleet vehi major focus.	icles	s of NPG, customer offer has not been	
CUSTOME OFFER	Given		hicles of N major focu	PG, customer offer s.							
OPERATIONAL SNAPSHOT BATTERY USAGE FOR V2G: tbc but assumed to be 35-95%											
USER BEH	AVIOUR		A	RCHITECTURE	HITECTURE			AVAILABILITY & PERFORMANCE			
USER BEHAVIOUR Too early to say				ispatched via Nuv atform. ontrol input will b y the service that t o test.	e c	determined		Interconnection process in UK (G59 and 83 currently) is one of most complicated globally, taking ~6 months to connect due to requirement to undertake network impact assessment. This project will seek to make recommendations to streamline this process, most likely through type certification.			

CHAPTER 3

JOURNAL

This time away has prompted some reflection. We log what we've learned – and the implications for the UK.

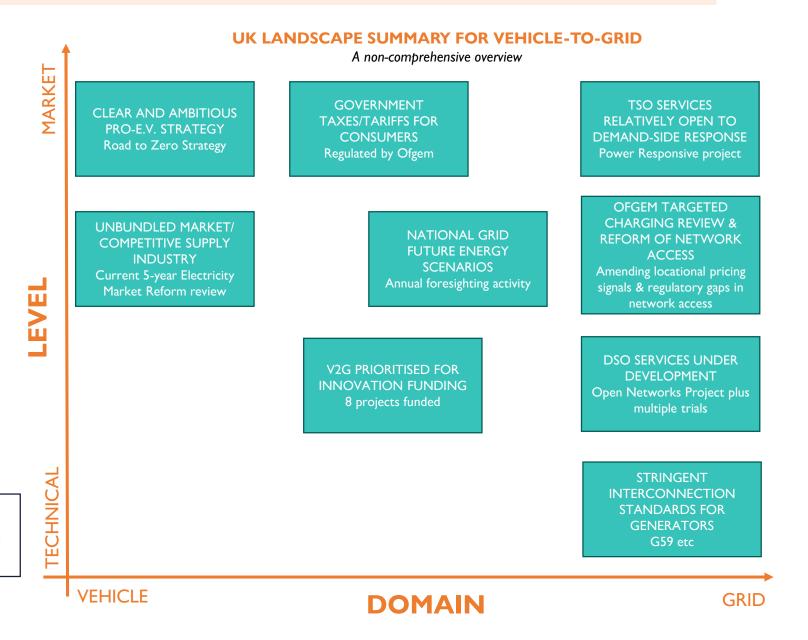
THERE ARE ONGOING UK REFORMS ON MULTIPLE FRONTS (GOV'T, REGULATOR, SYSTEM AND NETWORK OPERATORS) TO ADDRESS V2G TECH & MARKET BARRIERS

VCONSULT

UK CONTEXT

So, we've mapped out V2G projects globally and visited ten landmark projects: there's plenty to log in our Journal and bring back home. But before we can tease out the lessons learned for the UK, we need to be aware of UK-specific market conditions.

The UK benefits from important commitment from government, the regulator, system operators and network operators to remove barriers to entry to V2G roll-out.


The chart on the right summarises some notable features of the market landscape. Its purpose is not to be comprehensive, since a detailed market review would constitute a report in itself*. Instead, the purpose is to prime our analysis covered on the following pages.

*See Cenex report listed in Appendix 2.

The observations on this page largely refer to

England,	Wales	&	Scotland	only.	The

market and regulatory context in Northern Ireland (NI) is distinct from that in GB, due to collaboration across the Island of Ireland. For instance, the procurement of system services in NI is run jointly with the Rol under the DS3 programme.

NORTHERN IRELAND

EVs CAN PROVIDE FAST AND FLEXIBLE BIDIRECTIONAL ENERGY FLOW, YET THE HARDWARE REMAINS COMMERCIALLY IMMATURE

OUR JOURNAL

Just as the development of V2G is on a journey from purely technical studies and demonstrator trials through to widespread commercial deployment to a large number of customers; this Journal follows the same path. We begin with the lessons learned for *technical* aspects, primarily focused on the hardware itself. We then consider the critical interface between *technical* and *regulatory issues*, before looking at *commercial models*. We consider insights into potential V2G *customers* before concluding with where V2G *can add unique value*. In all of the above we consider key learnings for the UK sector.

TECHNICAL

Fast and flexible bidirectional power flow has been demonstrated in a range of markets and a range of applications:

- **Fast** the Parker project has shown that vehicles can respond in less than 2 seconds, faster than traditional forms of frequency response.
- **Flexible** vehicles can provide a flexible service that can be tailored to the specific market application. This ranges from peak reduction in Hawaii, frequency response in Denmark and constraint management for the TSO in Germany.

Yet the hardware remains immature:

- Chargers few bi-directional chargers are commercially available, with performance being a concern cited by many projects. Costs are high (e.g. over 5 times V1G enabled chargers), although there is significant scope for cost reduction if mass scale can be achieved.
- Vehicles few V2G-enabled vehicles are commercially available, with Japanese
 manufacturers dominating the market. The range of vehicles is expected to increase over the
 next couple of years. As more vehicles come to market, the differences in capabilities (already
 considered by the Parker and INVENT projects) will become more visible.

TECHNICAL CONTINUED.

Efficiency losses – The Parker project found that efficiency losses were significant when discharging at a rate lower than the rated power of the equipment.

AC / DC debate is live. DC ChaDeMo solutions dominate the market at present but there is significant interest in AC solutions (Smart Solar Charging, INVENT, Kepco).

The marginal degradation cost of V2G activities should be considered: However, the magnitude of this degradation cost appears much smaller than that caused by differences in driving behaviour (and particularly regenerative braking). Potential damage depends on the nature of the service, with full charge/discharge cycles being the worst. Car manufacturers may move towards certifications to make it a requirement to be an approved aggregator or charger.

Make slow starters mandatory: A key finding of the City-zen project (Amsterdam) is that it is crucial to ensure that grid stability does not interfere with the charger. Having incurred problems with this early in their project, the City-zen team recommend that grid acceptance standards are amended to make it mandatory for 'slow starters' to be incorporated into all V2G chargers. Slow starters limit the inrush of voltage, making the power quality more stable. The cost of incorporating this technology is reported to be low.

LEARNINGS FOR THE UK

- Support hardware development*
- Be flexible on AC/DC
- Consider slow-start charging technology

*Current Innovate UK focus area.

REGULATION

The energy system is heavily regulated – and this regulation is not well suited to flexibility assets which are decentralised, behind-the-meter and less controllable.

Specific examples include:

Interconnection standards

- Onerous interconnection requirements were repeatedly flagged in interviews (Grid Motion, France; JumpSMARTMAui, USA; Parker, Denmark). As an example, in Denmark nuvve were initially given an 89 page wind farm connection guide!
- A key challenge for providers is that interconnection standards are country-specific, meaning the system has to be adapted every time.
- The EV community does not expect special treatment. But along with other distributed energy providers – such as domestic demand-side response – it expects requirements to be proportionate to asset size.
- The interconnection process in the UK (G59 and G83 currently) is one of the most complicated globally, taking ~6 months to connect due to requirement to undertake a network impact assessment. The NPG project seeks to make recommendations to the ENA to help streamline this process. This would put the UK at the forefront globally.

Energy charges and settlement

- High cost of settlement meters: To demonstrate that an asset has provided a service, settlement meters are required. Different meters are often required for different services and these meters are often designed for much larger utility scale assets. This means proportionally high costs for V2G providers.
- Double-charging: In Germany V2G flexibility providers must pay energy levies on both production and consumption as storage is not yet a separate regulatory entity. This is also an issue in Netherlands and Denmark. The UK is more advanced in this area with Ofgem making various regulatory changes including adding storage as specific term within electricity licenses.

System services: energy tariffs are lower when providing a system service. This leads to the challenge of 'baselining' or distinguishing between imports that are used to charge the car for mobility, and those imports used by the car to provide a service. In the UK, NGET's Power Responsive goes some way to addressing this (though not fully).

Service specifications are particularly important and need to be defined with this technology class in mind. Three specifications emerge as crucial:

- 1. **Response time** although EVs can respond rapidly (<2 secs), stand alone batteries are currently faster. Implementation of slow-start charger technology (see previous page) could slow EV response time further.
- 2. Duration The Parker project noted that the amount of power that could be bid in as a service often had to be less than the charger capacity to ensure that the vehicle could provide a service over the full duration defined within the service specification. Reducing the duration could therefore allow a greater power response to be provided. To fully access the potential EV resource, service specifications need to be better aligned with what can be delivered or aggregators need to blend with other resources.
- **3. Availability** DSOs are used to their assets (grid infrastructure) providing extremely high levels of reliability (99.9%+). This is challenging if EVs are to play a significant role in deferring grid reinforcement or expansion costs. Availability and performance issues need to be carefully considered within service and contract specifications for such works.
 - Use NPG project to streamline interconnection process

LEARNINGS FOR THE UK

Design service specifications with V2G in mind, in particular response time (current min of 2 secs), duration (linked to power requirements) and availability

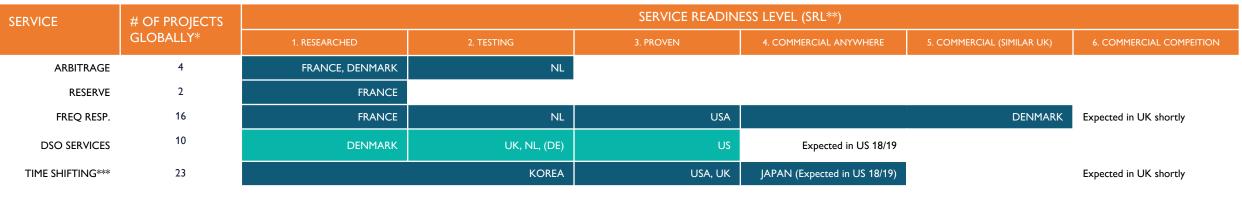
COMMERCAL

V2G provision of DSO services are underrepresented globally with 10 projects exploring DSO services. Projects have generally focused on time-shifting and/or frequency response due to the higher value available.

This appears to reflect lack of DSO service maturity more than inherent V2G capability. Interviews suggest that the reason why DSO services have been overlooked is that to date (a) the market value is unclear and (b) the service specification and route to market are not normally well understood.

As a result, DSO services currently have a relatively low SRL of 3. The SRL

summarises the techno-commercial readiness of V2G systems to provide a particular service in the UK. An SRL of 3 means DSO services have been proven (in the SmartMAUI project in the US), with testing ongoing in the UK (NPG) and Netherlands (City-zen project). Also notable is the Re-dispatch project in Germany which is providing constraint management, albeit to the TSO. An SRL of 4 is in sight with tenders expected in Hawaii towards the end of this year.


V2G DSO services can benefit from developments on other services. The Parker project in Denmark demonstrates that V2G can provide a commercial service while meeting demanding technical standards for speed of response, availability and performance.

Location is more of a priority for DSO services. Frequency response is location agnostic, while DSO Services are location specific. This is both an opportunity and a challenge for V2G – an opportunity as there are likely to be vehicles in almost all locations; a challenge as there will only ever be a limited number of vehicles within a specific area making a statistical approach to forecasting difficult. This suggests a key role for aggregators in blending assets to reduce availability risk. V2G providers are also likely to have significant amounts of data that could help DSOs manage their network.

DSO services and V2G therefore have potential to mature together.

LEARNINGS FOR THE UK

DSOs need to clarify the value of services, define in which locations services are required and define service specifications with V2G in mind.

*Multiple selections permitted **Full definition of SRL on page 11

L on page 11 ****For energy users

CUSTOMERS

Our global review shows social considerations typically come second in V2G project activity. This is a problem given that V2G potential depends on user acceptance, with drivers defining the constraints which V2G providers work within. A lack of focus on user acceptance is also noted within academic literature [Sovacool et al, 2018].

Consumer types and mobility behaviours are diverse. Project dashboards covered a range of customers including families, fleets and car-share schemes, even school busses for three US-based projects. Each customer will have their own mobility patterns and behaviours that need to be clearly understood. Averages will only tell part of the story with segmentation more useful.

This diversity adds value to V2G. In Denmark, the Parker project has been able to achieve 24/7 response only through diversity in the types of commercial fleets contracted (e.g. utility vehicles, port vehicles, municipality vehicles). Similarly JumpSMARTMaui noted that they could only provide frequency response during evenings due to the specific customer category.

Data is important. On the JumpSMARTMaui project, Hitachi had two years of V1G trial data on driving pattern data at an individual household level which made it easier to subsequently introduce V2G. This project also flagged the importance of understanding other charging options locally, with families having the option of using DC fast chargers locally, meaning they only plugged in at home every other day on average.

But, **Warning! Consumers do not always behave how you expect.** The customers are real people who take unplanned trips, may have vehicles that break, or are crashed into. They may not want to always connect their EV when at home or at work, with plug-in times typically lower than parking times. This is a real challenge. Mitigations include close to real time bidding of services, some allowance for lower availability and / or aggregation with other assets.

A big question is around lowest min SoC acceptable to users (How low can you go?). The answer is determined by both user acceptance and battery warranties. This review has suggested that vehicles are typically managed within the 25-95% SoC range, although this is vehicle and service dependent. It is less clear how comfortable customers are with this.

Car-sharing helps dodge the dual consumer concern of range and battery

degradation. The City-zen project (Amsterdam) has engaged a car-sharing company, with good results. The downside is lower plug-in time compared with individually owned vehicles. Plug-in time is hugely variable; however, the project's experience has been that the shared car's plug-in time at the V2G charger is ~60%, though they believe that this might be increased with greater V2G charger availability.

This raises the bigger question of how V2G fits in with the future of mobility. From leased vehicles, to car sharing, to electric vehicles and, in due course, to autonomous vehicles, mobility is undergoing a profound transformation. The most advanced projects are part of this trend. For instance, Smart Solar Charging and City-zen are focused on car-sharing schemes, while in Denmark Nuvve are using V2G to reduce the monthly fee paid by customers for all of their mobility needs.

LEARNINGS

FOR THE UK

- Embrace diversity in consumer types, data will help
 - Integrate V2G into mobility-as-a-service schemes (e.g. car rental or sharing schemes etc.)
- Address social considerations for future projects, within the context of broader changes in mobility.

V2G CAN ADD UNIQUE VALUE, PARTICULARLY AS PART OF BLENDED ASSETS. BUT PROPORTIONATE STANDARDS AND CHARGER COST REDUCTION ARE NEEDED

UNIQUE VALUE OF V2G

Many of the services in this report can also be provided by smart charging (V1G). A key challenge for V2G is how and when it can add unique value over and above V1G. This review has identified the following as key areas of added value:

- Services where location matters. The Redispatch project in Germany is seeking to manage transmission constraints across the country. This is managed through seeking different service profiles from the highly distributed V2G fleet depending on the location.
- Locations with surplus solar capacity. V2G is a useful complement to solar at a range of scales. For instance at a site level, V2G can help increase local consumption at near solar projects, with export from vehicles if a building is able to use the additional power. At a system level, V2G can help manage the 'duck curve' issue so prevalent in California (and potentially an issue in the UK in due course), with vehicles managing the morning to midday solar ramp-up through charging, and evening solar ramp-down through discharging. This helps explain why INVENT, City-zen and Smart Solar Charging are so focused on the interaction with solar. However, legacy solar subsidies can make this difficult (i.e. as seen via the City-zen project).
- High time of use or peak import tariffs. In areas with significant time of use or peak charges, V2G can make a significant impact. This is a key focus of nuvve's commercial offer in California.
- Longer-duration services. Smart charging can only provide frequency response for the period of time when the vehicle is charging. In contrast, due to it's bi-directional nature, V2G can provide frequency response until the point at which the SoC needs to be returned to the required level for the customer. Naturally this depends on flexibility within the service specification to allow management of state of charge for any periods of sustained asymmetric frequency behaviour. Previous studies by nuvve suggest revenue from V2G can be a multiple of 8-15x that from V1G for provision of frequency response services.

But even in these scenarios, economic viability will only be achieved when wider economic conditions are met:

- Pilots essential to achieve scale: Large scale demonstration projects are needed to unlock markets. This bodes well for the UK given 8 demonstration projects funded by Innovate UK (see Appendix 1).
- **Proportionate interconnection standards:** These must be appropriate for these diverse, distributed and less controllable assets.
- Charger cost reduction essential: Representatives of M-tech Labo (Nagoya) emphasise that economical feasibility of V2G 'needs further penetration of EV, cost reduction of V2X chargers and standardization.' Bi-directional chargers are not yet mass-scale products. This clearly limits the ability to achieve scale.

Finally it is important **not to consider V2G in isolation**. In practice V2G will be blended with a range of other assets such as demand side response and batteries. As Hitachi note: 'EVs are very fast and flexible, and when combined with other resources, can be very valuable to the grid'

LEARNINGS FOR THE UK

- Focus on when and where V2G can add value
 - Support aggregation of V2G with other technologies (into Virtual Power Plants)

APPENDICES

- 1. Project list
 - Global
 - Innovate UK
- 2. Sources

# PROJECT NAME	COUNTRY	START YEAR	NO. CHARGERS		ESUMMARY
1 Vehicle-to-Grid (V2G) Pilot Project	Hong Kong	2011	1	-	Small scale proof of concept trial in Hong Kong
2 <u>M-tech Labo</u>	Japan	2010	5	ΤS	Early V2B trial using 5 iMiEVs, reducing peaks by 12.7% at Mitsubishi Motors' office – together with second life battery
3 Osaka business park	Japan	-	-	-	Small scale trial for V2B, with little information available publicly
4 Toyota Tsuho / Chubu Electric / Nuvve	Japan	2018	-	-	Expected to be first ever V2G (as opposed to V2B) project in Japan. Government-funded trial announced in 2018
5 <u>V2G Aggregator project</u>	Japan	2018	-	-	Government-funded project just announced to build V2G system and test business models in Japan
6 Leaf to home	Japan	2012	4000+	TS	Commercially available vehicle-to-home product in Japan with over 4000 units sold (press release 2017).
7 Korean V2G	Korea	2015	3	TS	KEPCO project laying technical groundwork for EV roll out in Korea
8 <u>Elia V2G</u>	Belgium	2018	2	FR	Leading Belgium project evaluating a mix of V2G and V1G to provide FCR services to TSO Elia.
9 Parker	Denmark	2016	50	FR, DSO A	, The aim of the Parker project is to validate that series-produced electric vehicles as part of an operational vehicle fleet can support the power grid by becoming a vertically integrated resource, providing seamless support to the power grid both locally and system-wide.
10 <u>ACES</u>	Denmark	2017	50	FR, DSO TS	The ACES project intends to holistically investigate technical and economic system benefits and impacts by large scale electric vehicles integration in Bornholm, augmented by real usage patterns, grid data and field testing for across continents replicability
11 <u>Suvilahti</u> pilot	Finland	2017	1	-	Finland first two-way public charger in connection with a solar plant and electrical storage facility.
12 Grid Motion	France	2017	15	FR, R, A	Large scale, privately funded demonstration of V1G and V2G in France – targeting frequency response, arbitrage and more. Seeking to open up French market
13 Redispatch V2G	Germany	2018	10	CM	German trial with 10 electric vehicles, with uni- and bi-directional capability. Seeking to prove 'dispatchability' of Evs to manage network constraints, reduce curtailment and reduce upgrades.
14 Honda, Offenbach	Germany	2017	1	ΤS	Honda are testing V2B application on a building with on-site solar.
15 <u>INEES</u>	Germany	2012	40	FR	German 'lighthouse' project which demonstrated the real world technical feasibility of V2G through the use of 20 SMA bi-directional inverters and modified Volkswagen UP vehicles.
16 <u>Vehicle-to-coffee</u>	Germany	2015	1	ΤS	The Mobility House's office is powered in part from Nissan LEAF in practical demonstration of vehicle to office concept.
17 <u>Genoa</u> pilot	Italy	2017	2	-	Two car trial testing V1G and awaiting definition of regulatory framework for V2G in Italy

#	PROJECT NAME	COUNTRY	START YEAR	NO. CHARGERS	SERVICE SUMMARY
18	<u>SEEV4City</u>	Netherlands, Norway, UK, Belgium	2016	13	DSO, TS Large-scale Northern European trial delivering 5 pilots in 4 countries. Pilots include: Loughborough Living Lab - single residential household with solar also installed; Amsterdam ArenA - Up to 200 uni- and bidirectional connected EVs will be part of the smart energy system; City depot of Kortrijk - single Nissan LEAF van providing V2B with onsite solar; Leicester City Hall - Vehicle to business trial with four vehicles at present; Vulkan Real Estate Building Oslo - innovative EV parking garage seeking to deploy V2G in next phase
19	<u>City-Zen Smart City</u>	Netherlands	2014	4	DSO, A Small-scale commercial trial of DSO service, engaging diverse customers: commercial, individual & car-sharing
20	Smart Solar Charging	Netherlands	2015	22	A, DSO, Pioneering AC V2G project with 22 chargers installed as part of city-car share scheme and solar in Lombok. Now seeking to scale up to 1000 chargers FR across region of Utrecht.
21	NewMotion V2G	Netherlands	2016	10	FR First V2G project in NL to provide Frequency Control Reserve (FCR) services to TSO TenneT with chargers at homes, offices and public locations.
22	Amsterdam Vehicle2Grid	Netherlands	2014	2	TS Small scale domestic trial looking at feasibility of V2H installations in Amsterdam.
23	Solar-powered bidirectional EV charging station	Netherlands	2015	1	TS Research project developing integrated EV charger and solar PV inverter, designed for solar car port applications.
24	Hitachi, Mitsubishi and Engie	Netherlands	2018	1	TS One V2G charger installed at Engie office in order to increase self consumption of on-site generation from solar PV. A stationary energy battery system also on site.
25	Porto Santo	Portugal	2018	-	- Project seeking to make Porto Santo a fossil-free island through the use of EVs to stabilize the grid. At present just V1G.
26	GrowSmarter	Spain	2015	6	TS 6 V2G chargers installed at Endesa facility and used for Time shift, Power balancing and Power quality support.
27	Zem2All	Spain	2012	6	- At this time largest real world V2G trial in world, forming part of wider e-mobility trial in Malaga.
28	Nissan Enel UK	UK	2016	100	- Large-scale trial proposed in UK by Enel and Nissan seeking to connect one hundred V2G units. Current status not clear and this trial may have become one of latest Innovate UK projects.
29	The Network Impact of Grid-Integrated Vehicles	UK	2018	16	DSO DNO-run project aiming to understand the negative and positive impacts of V2G-enabled EVs on the distribution network.
30	Hitachi - Isle of Scilly Smart Island	UK	2017	-	- Wide-ranging smart-grid programme on island network. V2G element appears relatively small at present
31	ITHECA	UK	2015	1	FR Micro-grid demonstration project at Aston University which installed UK's first ever V2G charger.
32	EFES	UK	2013	4	FR, TS Cenex led project developing V2G technology and software for residential and commercial applications, with installation of 3 V2G chargers at residential and commercial properties.
33	IREQ	Canada	2012	1	DSO, TS Technology demonstration of back up supply and export to the grid for an assembled electric test vehicle and charging station.
34	Powerstream pilot	Canada	2013	-	- Small scale, microgrid proof-of-concept trial incorporating V2G in phase 2

#	PROJECT NAME	COUNTRY	START YEAR	NO. CHARGERS	SERVICE	SUMMARY
35	NYSERDA	USA	2016	5	-	6 Nissan LEAF vehicles used to provide bi-directional grid services on the CUNY Queens College campus
36	<u>JumpSmartMaui</u>	USA	2012	80	DSO, FR	Deployed 80 V2H/B chargers which demonstrated discharge, in response to grid signals, over 6-9pm peak period thereby helping manage distribution system loads and frequency events
37	BlueBird School Bus V2G	USA	2017	8	FR, TS	8 Bluebird electric school buses deployed at the Rialto Unified School District providing ancillary services and energy management services.
38	<u>US Air Force</u>	USA	2012	13	FR, R, TS	Small-scale V2G pilot completed by the US Department of Defence leading to a large-scale testing and evaluation programme on 6 DoD installations.
39	<u>NRG Evgo, UCSD</u>	USA	2015	9	-	EVgo partnership with UC San Diego testing use case and interconnection standards with range of auto manufacturers on the UCSD campus (which also has solar PV and stationary storage).
40	<u>KIA Motors, Hyundai Technical</u> <u>Center Inc., UCI</u>	USA	2016	6	TS	UC Irvine partnered with KIA/Hyundai to demonstrate V2G control software, understand charging behaviour and assess impact on the grid.
41	NREL Integrate / living lab	USA	Not known	3	-	Use cases for V2G assessed for one vehicle and one school bus using grid simulator and on-site solar.
42	<u>US DoD – Fort Carson</u>	USA	2013	5	TS	A V2G grid services demonstration was performed at Fort Carson. This was part of the three-phase SPIDERS programme that sought to demonstrate the practicality and benefits of creating secure microgrid architecture across three DoD installations.
43	Grid on wheels	USA	2012	15	FR, TS	First, real world field test of V2G technology with 15 vehicles providing frequency response services over two year period and range of driving patterns.
44	<u>Fiat-Chrysler V2G</u>	USA	2009	-	FR, TS	Large scale demonstration with 140 PHEVs, a portion of which were fitted with bi-directional charging capability, to test V2H and V2G capability.
45	<u>Clinton Global Initiative School</u> <u>Bus Demo</u>	USA	2014	6	FR, TS	Project seeking to improve economic viability of electric school buses through V2G and V2B trials in two school districts.
46	Distribution System V2G for Improved Grid Stability for Reliability	USA	2015	2	DSO, TS	EPRI project seeking to assess the value of, and barriers to, V2G at the distribution level, including whether these benefits can be monetised and quantified.
47	UCLA WinSmartEV	USA	Not known	1	DSO,. TS	Research project seeking to achieve maximum power flow from vehicles, while addressing response time and control, for a variety of applications including reactive power, voltage regulation and distributed storage.
48	<u>Massachusetts Electric School Bus</u> <u>Pilot</u>	USA	2015	-	-	Pilot project to test deployment of three electric school buses in cold weather environments in US.
49	INVENT	USA	2017	50	FR, DSO, TS	S Nuvve seeking to deploy V2G technology on 50 UC San Diego electric vehicles, in project part funded by California Energy Commission.
50	Torrance V2G School Bus	USA	2014	2	FR, TS	Department of Energy funded project which retrofitted 2 school buses.

APPENDIX 1

LIST OF UK DEMONSTRATOR PROJECTS FUNDED BY INNOVATE UK IN 2017 V2G COMPETITION

In 2017, Innovate UK launched a competition for real-world demonstrators in V2G systems. The Table below documents the 8 successful projects. Further funding was awarded to V2G feasibility studies and collaborative R&D.

SOURCE: Innovate UK (2017) <u>Results of competition: Innovation in Vehicle-To-Grid (V2) Systems:</u> <u>Real-World Demonstrators</u>, with additional Innovate UK edits to reflect latest project summaries.

PROJECT OVERVIEW		PROJECT PART	FUNDING								
Project Title	Category	Lead Applicant Corporations SME Research / Consulting Academia Local Authorities Additional Applicants/Partners		Months	Total project cost (£)	t Funding sought (£)					
V2GO	Fleets: fleet-based trial, including customer profiling and suitability for V2G services	EDF	EDF	Arrival Upside Energy The Virtual Forge		University of Oxford	Oxfordshire Conty Council	Vehicles/Automotive: Arrival Infrastructure/Aggregator: Upside Energy, Oxfordshire County Council, Fleet Innovations, EO Charging Energy operators: (EDF) Academia: University of Oxford	36	4,138,313	3,046,784
E-FLEX - Real-world Energy Flexibility through Electric Vehicle Energy Trading	Car Club : V2G enabled fleets in urban area	Cisco	Cisco Transport for London	E-Car Club Nuvve	Cenex	Imperial College London	Greater London Authority	Vehicles/Automotive: E-Car Club Infrastructure/Aggregator: Nuvve, Greater London Authority, Transport for London, (Cisco) Academia: Imperial College London Consulting: Cenex	30	5,290,958	3,664,687
Powerloop: Domestic V2G Demonstrator Project	Domestic: Implementation of domestic V2G systems interoperable with all providers	Octopus Energy	UK Power Networks ChargePoint	Octopus Energy Octopus Electric Vehicles Open Energi	Energy Saving Trust Navigant Consulting Europe			Vehicles/Automotive: Octopus Electric Vehicles Infrastructure/Aggregator: ChargePoint, (Octopus Energy) Energy operators: Open Energi, UK Power Networks Consulting: Energy Saving Trust, Navigant Consulting Europe	36	6,993,133	3,127,489
SMARTHUBS Demonstrator	Smart Hub: Integration of V2G charger, battery and PV controller into a smart hub	Flexisolar		Turbo Power Systems Flexitricity Flexisolar				Infrastructure/Aggregator: Turbo Power Systems, Flexitricity, (Flexisolar), PowerStar	36	2,241,214	1,386,000
Bus2Grid	Bus: Evaluation of provision of V2G services from buses while at depot	SSE Services	BYD (UK) SSE Services UK Power Networks			University of Leeds		Vehicles/Automotive: BYD (UK) Infrastructure/Aggregator: (SSE Services) Energy operators: UK Power Networks Academia: University of Leeds	36	2,431,835	774,028
EV-elocity	Fleets and Airport: Validation of customer acceptance and business viability	AT Kearney	Honda Motor Europe	E-Car Club SlamJam Toto Energy	AT Kearney Cenex	University of Nottingham Warwick University	Leeds City Council Nottingham City Council	Vehicles/Automotive: Honda Motor Europe, E-Car Club Infrastructure/Aggregator: Leeds City Council, Nottingham City Council, SlamJam Energy operators: Toto Energy Academia: University of Nottingham, Warwick University Consulting: Cenex, (AT Kearney)	36	5,622,154	3,899,284
e4Future	Mixed: Validation of stacked V2G services in diverse scenarios	Nissan Motor (GB)	Nissan Motor (GB) National Grid Northern Power Grid UK Power Networks eON			Imperial College London Newcastle University		Vehicles/Automotive: (Nissan) Infrastructure/Aggregator: Nuvve Energy operators: National Grid, Northern PowerGrid, UK Power Networks Academia: Imperial College London, Newcastle University	36	9,864,302	6,000,379
Sciurus	Domestic: Implementation of VPP and bundling of energy services with vehicle lease/price	Ovo Energy	Ovo Energy Nissan Motor (GB)	OVO Technology Indra Renewable Technologies	Cenex			Vehicles/Automotive: Nissan Motor (GB) Infrastructure/Aggregator: OVO Technology, Indra Renewable Technologies Energy operators: (OVO Energy) Consulting: Cenex	24	4,775,791	3,138,829

FORMATION OF GLOBAL LIST OF PROJECTS

Literature Review

In addition to the links provided within Appendix 1:

SOURCES

- Amsterdam University of Applied Sciences/SEEV4-City (2018) <u>A V2G Repository: 18</u> <u>European Vehicle2Grid Projects</u>
- Cenex (2018) <u>V2G Market study: answering the preliminary questions for V2G What,</u> where and how much
- ENA (2018) Online Smarter Networks Portal
- Elaad.nl (2018) Our Projects
- EPRI (2016) <u>Vehicle-to-Grid: State of the Technology</u>, Markets, and Related <u>Implementation</u>
- NREL (2017) Vehicle-Grid Integration: A global review of opportunities and issues
- Innovate UK (2017) <u>Results of competition: Innovation in Vehicle-To-Grid (V2) Systems:</u> <u>Real-World Demonstrators</u>
- Mobility House (2018) <u>Vehicle-to-Grid (V2) Technology Map</u>
- NREL (2017) Critical Elements of Vehicle-to-Grid (V2G) Economics
- NREL (2015) <u>Multi-Lab EV Smart Grid Integration Requirements Study</u>
- PG&E (2018) <u>Electric Program Investment Charge (EPIC) EPIC 2.03b Test Smart</u> <u>Inverter Enhanced Capabilities – Vehicle to Home</u>

Mobility House

SEEV4-City (2018) Summary of the State-of-the-Art report

Targeted discussions with representatives of

- Cenex
- IEA
- IREC

NuvveNRCan

NREL

Plus, core project team of Everoze, EVConsult, Innovate UK and UK Power Networks.

Other sources consulted during the course of the study

- Sovacool et al (2018) <u>The Neglected social dimensions to a vehicle-to-grid (V2)</u> <u>transition: a critical and systematic review.</u> Environ. Res. Lett 13 013001.
- Energy Networks Association (2018) <u>Open Networks Project: DSO service</u> requirements – definitions
- Kammerlocher et al (2015) <u>Modelling of the vehicle to grid storage potential</u> <u>considering uncertainties in user behaviour based on fleet data</u>. International ETG Congress 2015, Bonn.
- Leitat (2018) <u>Demystifying TRLs for Complex Technologies</u>
- Nemo (2018) <u>Website e-mobility eu</u>
- Nuvve & DTU (2018) Project report: Integration of new technology in the ancillary service markets
- UK Power Networks (2017) <u>Consultation Report: FutureSmart a smart</u> grid for all: our transition to Distribution System Operator

Journey over...or just the beginning?

We hope you've enjoyed this global roadtrip of V2G projects – and that it helps promote awareness of the lessons learned from pioneering pilot projects.

Our parting message is this: there's been much made of the need for *cross-vector* exchange of knowledge on V2G – strengthening the links between transport and power sectors. But through our work, we've uncovered a need for much more *cross-country* learning too. This report is our small contribution, but we sense there's much more to come...

WITH THANKS TO OUR CONTRIBUTORS

Alliander: Marisca Zweistra BYD: Mike Kerslake Cenex: Adrian Vinsome CLP: Edmond Chan Hitachi Ltd: Seiji Sato, Shinichi Kasai IEA: Cristina Corchero García KEPCO: Son Chan, Ha Yeon-Kwan Lomboxnet: Robin Berg Mitsubishi Corp: Makoto Takeuchi, Junichi Kimura Mobility House: Marcus Fendt, Anja Strunz NRCan: Hajo Ribberink Nuvve: Paige Mullen, Marc Trahand

AUTHORS & REVIEWERS

Everoze: Paul Reynolds, Felicity Jones, Benjamin Lock, Nithin Rajavelu, Joe Phillips, Robin Redfern
EVConsult: Sjoerd Moorman, Tim van Beek, Dreas de Kerf
UK Power Networks: Thazi Edwards, Sikai Huang, Sam Do, Giulia Privitera, Athanasios Zarogiannis, James Watson
Innovate UK: Marco Landi, Mark Thompson

DISCLAIMER

This report is made available for information only. It is not intended to amount to advice on which you should rely. You should always obtain professional or specialist advice before taking, or refraining from, any action related to the content of this report.

Although in the drafting of this report we have made reasonable efforts to ensure the accuracy of its content, we make no representations, warranties or guarantees, whether express or implied, that the content of the report is accurate, complete or up to date. UK Power Networks, its affiliates, and all parties involved in the drafting of this report disclaim liability for any loss, howsoever caused (including, without limitation, through the negligence of UK Power Networks and its staff, employees, contractors and consultants), arising directly or indirectly from reliance on the information in this report.

This document is issued by Everoze Partners Ltd in accordance with proposal UKPN001-P-01-A dated 4 June 2018 and associated proposal contract MAA-20180277 dated 19 July 2018. The document reference is: UKPN001-S-01-I, dated 11th Oct 2018.